MULTIPLE SOLUTIONS FOR A FRACTIONAL LAPLACIAN SYSTEM INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS AND HOMOGENEOUS TERM

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multiple Solutions for a Singular Quasilinear Elliptic System Involving Critical Hardy-sobolev Exponents

This paper is concerned with the existence of nontrivial solutions for a class of degenerate quasilinear elliptic systems involving critical Hardy-Sobolev type exponents. The lack of compactness is overcame by using the Brezis-Nirenberg approach, and the multiplicity result is obtained by combining a version of the Ekeland’s variational principle due to Mizoguchi with the Ambrosetti-Rabinowitz ...

متن کامل

Multiple Solutions for Quasi-linear Pdes Involving the Critical Sobolev and Hardy Exponents

We use variational methods to study the existence and multiplicity of solutions for the following quasi-linear partial differential equation: ( −4pu = λ|u|r−2u+ μ |u| q−2 |x|s u in Ω, u|∂Ω = 0, where λ and μ are two positive parameters and Ω is a smooth bounded domain in Rn containing 0 in its interior. The variational approach requires that 1 < p < n, p ≤ q ≤ p∗(s) ≡ n−s n−pp and p ≤ r ≤ p ∗ ≡...

متن کامل

Existence and Multiplicity of Solutions to Strongly Indefinite Hamiltonian System Involving Critical Hardy-sobolev Exponents

In this article, we study the existence and multiplicity of nontrivial solutions for a class of Hamiltoniam systems with weights and nonlinearity involving the Hardy-Sobolev exponents. Results are proved using variational methods for strongly indefinite functionals.

متن کامل

Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential

Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33

متن کامل

Multiplicity of solutions for a class of quasi- linear elliptic equation involving the critical Sobolev and Hardy exponents

In this paper, by using concentration-compactness principle and a new version of the symmetric mountain-pass lemma due to Kajikiya (J Funct Anal 225:352–370, 2005), infinitely many small solutions are obtained for a class of quasilinear elliptic equation with singular potential −∆pu− μ |u| p−2u |x|p = |u|p(s)−2u |x|s + λf(x, u), u ∈ H 1,p 0 (Ω). Mathematics Subject Classification (2000). 35J60,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2020

ISSN: 1392-6292,1648-3510

DOI: 10.3846/mma.2020.7704